t^2-5t=32

Simple and best practice solution for t^2-5t=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2-5t=32 equation:



t^2-5t=32
We move all terms to the left:
t^2-5t-(32)=0
a = 1; b = -5; c = -32;
Δ = b2-4ac
Δ = -52-4·1·(-32)
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{17}}{2*1}=\frac{5-3\sqrt{17}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{17}}{2*1}=\frac{5+3\sqrt{17}}{2} $

See similar equations:

| 5x=(25+7) | | 5(c-2)=3(c+4) | | 5(c-2)=3(c=4) | | 12=x/2- | | 2(3h-5)=14 | | 12=x÷2-8 | | 27x-9+5x+15=24 | | -4(5x-1)+6x=2(x+8) | | 5=12^x | | 2w-10=7w-20 | | 6-x1=10 | | 12-2(x-5)=0 | | 3y-y-2=0 | | 4x-6=3x+24=3x-15 | | 3b-1=2b+2 | | 3b-1=2b+23 | | 9x+7x+5x=180° | | 0.5(x+2/3)=3(x-1 | | -3x+9=10x+15 | | 3(2x+1)+2(3x+2)=35 | | 18-5=3+4k-9k+6 | | 18=m+4 | | 4-3p+8p-7=-13 | | 4a²-4a-3=0 | | -10=a/10-11 | | 6.5=r/4+6 | | -18.8=s/5-10 | | t/0.5-9=-27 | | 5(3c-1)-4=13c+3 | | t/2+14=12 | | 138=3x+48 | | a/10-17=-17.9 |

Equations solver categories